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Abstract

Introduction

The goiter, a neglected heterogeneous molecular disease, remains a major indication for

thyroidectomies in its endemic regions.

Objectives

This study analyzed differential gene expression in surgical specimens diagnosed with multi

nodular and compared the data to that of thyroid tissue without multinodular goiter from

patients undergoing thyroidectomy in Manaus-AM, Brazil using RNA-seq technology.

Methodology

The transcriptome information of the surgical specimen fragments with and without multi-

nodular goiter was accessed by Illumina HiSeq 2000 New Generation Sequencing (NGS)

using the RNA-seq NEBNext® Ultra™ RNA Library Prep Kit for Illumina®—#E7530L proto-

col and differential gene expression analysis.

Results

Differences were found between the gene expression profiles of the diseased tissues and

those of the healthy control tissues; at least 70 genes were differentially expressed. The

HOTS gene was expressed only in multinodular goiter tissues (p < 0.05).

Conclusion

These results demonstrate that the gene expression profile of multinodular goiter is pro-

tumoral and that HOTS can play a central role in multinodular goiter development.
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Introduction

Partial or total removal of the thyroid gland affected by goiter is one of the most commonly

performed surgeries in medical practice. The role of goiter as a risk factor for well-differenti-

ated thyroid carcinoma is unclear; however, the prevalence of incidental carcinoma in patients

operated for goiter in endemic areas is 10–12% [1, 2], which is greater than the overall preva-

lence of the disease (5.1%) [3].

Although goiter is the main indication for thyroidectomy in goitrogenic geographic areas,

its molecular-genetic component has been scarcely studied compared with that of thyroid car-

cinoma. In addition, studies conducting massive sequencing for thyroid nodular diseases have

focused on well-differentiated and undifferentiated thyroid carcinoma [4, 5].

Transcriptome analysis, which is gaining prevalence in studies on tumor diseases, allows a

better understanding of gene expression profiles in tissues under different conditions, includ-

ing the knowledge of non-coding RNAs (ncRNAs), monoallelic expression of imprinted

genes, and several transcriptional phenomena, such as fluctuations in the expression of non-

constitutive sequences [6].

The performance of ncRNAs, such as the products of the H19 gene, and their relationship

with several types of cancer are well reported in the literature. This gene, which is never

expressed beyond the embryonic period in normal conditions, has high expression in tumors

related to tissue hypoxia and cancer. Aberrant expression patterns of this sequence occur in

breast cancer [7] and melanoma [8].

In lung neoplasms, high expression of H19 is related to the epithelial-mesenchymal transi-

tion [9]. Its action on metabolic and cell cycle pathways is thought to be involved in the modu-

lation of a pro-tumor state [10–12].

The need for a preoperative diagnosis due to gaps in the Bethesda cytological classification

from fine needle aspiration (FNA) of thyroid nodules and the advent of molecular studies of

these diseases have allowed the development of molecular tests for well-differentiated thyroid

carcinoma, notably based on the identification of BRAF and RAS mutations as well as RET/
PTC and PAX8/PPARy rearrangements [13, 14], among others such as Afirma GEC1, Thy-

GenX TEST1, and ThyroSeq TEST1, all without relevant application for multinodular goiter.

This unprecedented study presents the occurrence of differentially expressed genes between

tissues affected by multinodular goiter and disease-free tissues (hereafter referred to as con-

trols) from specimens collected in a geographical area (Amazonas, Brazil) endemic for the

disease.

Method

This study was approved by the Human Research Ethics Committee of the Adriano Jorge Hos-

pital Foundation under CAAE 16463813.9.0000.0007 on June 1, 2013.

The study included transcriptome sequencing of two thyroid tissue fragments with multi-

nodular goiter and one control tissue fragment from patients operated in a multinodular goiter

endemic region (Manaus, AM, Brazil).

The thyroid fragments used in this study each measured 1 cm3 and were obtained directly

from the surgical specimen after its removal from the cervical region by thyroidectomy. Tissue

in the control group was obtained from thyroid tissue fragments from patients with thyroid

adenoma, from a region of the thyroid gland 1.5 cm away from the nodule. Tissues were con-

firmed disease-free by pathology service analysis afterwards.

Immediately after collection, the fragments were stored in microcentrifuge tubes contain-

ing the preservative RNAlater™ Stabilization Solution (Thermo Fisher) in a -80 ˚C deep freezer
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until histological classification of the specimen by a pathologist as disease-free tissue or tissue

with multinodular goiter.

The total RNA was prepared with TRIzol1 Reagent (lifetechnologies™) protocol, following

the manufacturer’s recommendations. All following steps to transcriptome sequencing was

performed by GenOne Soluções em Biointecnologia Facility (Rio de Janeiro, Brazil). RNA

libraries were validated in an Agilent 2100 Bioanalyzer using the RNA 6000 nano Assay. The

cDNA libraries were constructed by using NEBNext1Ultra™ RNA Library Prep Kit for Illu-

mina1—#E7530L RNA-seq protocol with an expected output of 20 GB of data per sample and

sequenced in the Illumina HiSeq 2000 platform.

Data analysis

The sequences exploratory analysis were carried out by the Bioinformatics group from the

Central Laboratory of High Performance Technologies in Life Sciences (LaCTAD), State Uni-

versity of Campinas (UNICAMP, SP, Brazil). SRA data accession number: PRJNA810866.

Reference genome mapping (Homo sapiens HG38) was performed using Bowtie2 [15],

transcript quantification was performed using RSEM [16], and differentially expressed genes

were analyzed using DESeq [17].

Differentially expressed genes were analyzed for biological function and protein class using

the Panther tool [18] available on the Gene Ontology Consortium platform (http://www.

geneontology.org/) [19], followed by protein-protein interaction analysis with the GeneMA-

NIA tool (http://www.genemania.org/) [20–22].

Results

The differential expression analysis of two tissue fragments with multinodular goiter and a

control tissue identified 65 differentially expressed genes and five pseudogenes, of which 61

were down-regulated and nine up-regulated in thyroid tissue with multinodular goiter com-

pared with the control tissue (Fig 1).

The 70 differentially expressed gene sequences were classified into 62 protein-coding genes;

five pseudogenes (SORD2P, PI4KAP1, ZBTB45P1, TMSB4XP4, and PKD1P5); and three

sequences related to the pre-mRNA of the transcription factor PRPF31 (RP11-1212a22.1,

RP11-514P8.6, and RP11-958N24.2), indicating that one sequence was a product of the

imprinted H19 locus encoding the HOTS nucleolar protein [Table 1].

A biological interaction analysis between functional genes identified 423 possible interac-

tions using the Gene MANIA tool with co-expression greater than 50% Fig 2.

Discussion

Medical publications on thyroid surgical diseases are focused on the search for thyroid carci-

noma biomarkers [23–26]. Initial immunohistochemistry and microarray studies comparing

the expression profiles of normal, multinodular goiter, adenoma, and carcinoma tissue sam-

ples identified different patterns between the diseases but similarity between the groups of

genes in the tissue with multinodular goiter and that with papillary carcinoma, which would

explain the higher prevalence of incidental carcinoma (preoperatively unknown) in thyroids

operated for multinodular goiter in goitrogenic areas and the existence of a common initial

tumorigenesis factor [27, 28].

The literature is not clear about the molecular origin of multinodular goiter, which certainly

involves epigenetic factors, heredity, and the classical iodine deficiency as well as iron and sele-

nium deficiencies in the diet and exposure to foods rich in flavonoids and cyanogenic
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substances, such as cassava. When chronic, these conditions would lead to mutations and the

onset of nodules in the gland [29, 30].

In medical practice, when facing thyroid nodules, the presence of malignant lesions needs

to be considered [31, 32] along with the preoperative FNA investigation and Bethesda’s

cytological classification, which often need to be repeated, present variable sensitivity and

agreement with histopathology, and are inconclusive in up to 30% of cases [33, 34].

The need to identify which patients with thyroid nodule should undergo surgery, new ther-

apy strategies, or clinical follow-up justifies the investigation of the molecular characteristics of

lesions to determine the risk of multinodular goiter malignancy.

In this study, 70 sequences were differentially expressed between multinodular goiter and

disease-free tissue. The down-regulated genes in multinodular goiter were related to several

molecular pathways, especially phospholipase C (PLCD4), apoptosis pathways (TNFRSF19),

heat shock proteins (HSPA1A, HSPA6), growth factors (SHC3, NRG1), p53 proto-oncogene

pathways (THBS1), and chaperone cell repair pathways (BAG3); on the other hand, the inflam-

matory (COL14A) and complement system (C4B) pathways were up-regulated in multinodular

goiter tissue, in addition to the exclusive presence of an antisense transcription from the H19

locus, which encodes the nucleolar protein HOTS in multinodular goiter [35].

These findings are similar to the characteristics of tumor diseases with reduced apoptosis

and cellular repair systems along with increased inflammatory activity in the presence of pro-

tumor locus products, in this case the HOTS nucleolar protein, which, together with the

lncRNA H19, would be possible inducers of cancerous breast, thyroid, liver, kidney, and lung

lesions [36, 37].

The action of the H19 gene and its products in tumor onset and hyperplastic lesions is evi-

dent, with the antagonism of H19 lncRNA and p53 and the activity of one of its gene products,

miR-675, in promoting cellular and chromosomal instability being well described, as well as its

Fig 1. Heat map graph comparing the fold values of the 70 differentially expressed sequences in each sample.

Values above the normalized reference value (Z score) are shown in green, the reference value is shown in red, and

values close to the reference are represented by a dark tone. Each column represents a sample, and each row represents

a sequence. N6, control tissue; B13 and B14, goiter tissues.

https://doi.org/10.1371/journal.pone.0268354.g001
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Table 1. List of genes differentially expressed in multinodular goiter and disease-free tissue when p< 0.05 (5%).

Gene symbol Gene description FC Interpretation

HOTS H19 opposite tumor suppressor Inf� Up-regulated
SORD2P Pseudogene 4.18 Up-regulated
C4B Complement C4-B 2.86 Up-regulated
C2CD4C C2 calcium-dependent domain-containing protein 4C 3.86 Up-regulated
C241377.2 Protein LOC100996720 5.71 up-regulated
CPXM1 Probable carboxypeptidase X1 2.11 up-regulated
NAPRT Nicotinate phosphoribosyltransferase 2.37 up-regulated
ST6GAL1 Beta-galactoside alpha-2,6-sialyltransferase 1 1.86 up-regulated
COL14A1 Collagen alpha-1(XIV) chain 1.62 up-regulated
HSPA6 Heat shock 70 kDa protein 6 -4.21 down-regulated
C1QL4 Complement C1q-like protein 4 -5.05 down-regulated
PLCD4 Phospholipase C -3.82 down-regulated
ERRFI1 ERBB receptor feedback inhibitor 1 -2.84 down-regulated
PCP4L1 Purkinje cell protein 4-like protein 1 -5.27 down-regulated
ATRNL1 Attractin-like protein 1 -4.34 down-regulated
MT1H Metallothionein-1H -2.71 down-regulated
ABCA13 ATP-binding cassette sub-family A member 13 -3.32 down-regulated
DNAJB1 DnaJ homolog subfamily B member 1 -2.46 down-regulated
CA12 Carbonic anhydrase 12 -2.89 down-regulated
PKD1P5 Pseudogene -2.89 down-regulated
RP11-958N24.2 Uncharacterized -5.83 down-regulated
ETV4 ETS translocation variant 4 -3.48 down-regulated
RP11-514P8.6 Uncharacterized 0 down-regulated
IGSF1 Immunoglobulin superfamily member 1 -2.49 down-regulated
RASD1 Dexamethasone-induced Ras-related protein 1 -2.51 down-regulated
MRPL23 39S ribosomal protein L23mitochondrial -3.47 down-regulated
CPNE4 Copine-4 -7.62 down-regulated
IL1RL1 Interleukin-1 receptor-like 1 -4.71 down-regulated
PI4KAP1 Pseudogene -2.95 down-regulated
DLEC1 Deleted in lung and esophageal cancer protein 1 -3.45 down-regulated
ZBTB45P1 Pseudogene 0 down-regulated
LECT1 Leukocyte cell-derived chemotaxin 1 -2.67 down-regulated
SHC3 SHC-transforming protein 3 -3.28 down-regulated
SORCS1 VPS10 domain-containing receptor SorCS1 -2.95 down-regulated
STARD9 StAR-related lipid transfer protein 9 -2.34 down-regulated
TMSB4XP4 Pseudogene -4.16 down-regulated
TMEM184A Transmembrane protein 184a -3.60 down-regulated
PCSK2 Neuroendocrine convertase 2 -2.22 down-regulated
FOSB Protein fosB -1.72 down-regulated
TRABD2A Metalloprotease TIKI1 -3.42 down-regulated
GATM Glycine amidinotransferase, mitochondrial -1.82 down-regulated
BAG3 BAG family molecular chaperone regulator 3 -1.88 down-regulated
FAM105A Inactive ubiquitin thioesterase FAM105A -2.32 down-regulated
HSPA1B Heat shock 70 kDa protein 1B -2.42 down-regulated
MME Neprilysin -2.86 down-regulated
PDE4C cAMP-specific 3’,5’-cyclic phosphodiesterase 4C -3.47 down-regulated
RTN4RL2 Reticulon-4 receptor-like 2 -1.72 down-regulated

(Continued)
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hyperexpression in the presence of external factors such as hypoxia [37]. A balance between

the products of sense (lncRNA) and antisense (HOTS) H19 transcripts may be related to the

regulation of cellular homeostasis.

There have been no studies on multinodular goiter using NGS and RNA-Seq with results

similar to those described in the present study. In thyroid carcinoma, some lncRNA are dis-

cussed in the gene regulation of disease progression, such as PTCSC3 [38], with XLOC 051122
and XLOC 006074 [39] in local metastasis and PANDAR as a possible target in pro-apoptotic

therapies for carcinoma [40].

The question of whether the presence of multinodular goiter can be considered a risk factor

for thyroid carcinoma still raises discussion. Recent findings have shown that the same histo-

pathologically diagnosed papillary lesion exhibits different protein expression behavior if the

patient has a history of multinodular goiter prior to the diagnosis of neoplasia [40–42].

Other studies have shown the importance of membrane proteins in the development of

hyperplastic and neoplastic thyroid diseases, especially connexins and aquaporins [43–45].

This study identified no differences between the expression profiles of connexins or aquapor-

ins in different tissues, but STARD9 (apolipoprotein) and CPNE4 membrane proteins were

down-regulated in multinodular goiter.

Thus, it was possible to identify molecular characteristics of multinodular goiter similar to

those found in the genesis of neoplastic tumor lesions, including: 1) reduced cell repair activity;

Table 1. (Continued)

Gene symbol Gene description FC Interpretation

EDN3 Endothelin-3 -1.75 down-regulated
NRK Nik-related protein kinase -3.30 down-regulated
EGR2 E3 SUMO-protein ligase EGR2 -1.63 down-regulated
TNFRSF19 Tumor necrosis factor receptor superfamily member 19 -2.26 down-regulated
ABCC3 Canalicular multispecific organic anion transporter 2 -2.23 down-regulated
HSD17B6 17-beta-hydroxysteroid dehydrogenase type 6 -1.72 down-regulated
RP11-1212A22.1 Uncharacterized -1.79 down-regulated
C15orf48 Normal mucosa of esophagus-specific gene 1 protein;NMES1 -2.57 down-regulated
GATA5 Transcription factor GATA-5 -4.48 down-regulated
FRAS1 Extracellular matrix protein FRAS1 -1.49 down-regulated
PCDH8 Protocadherin-8 -3.16 down-regulated
YJEFN3 YjeF N-terminal domain-containing protein 3 -2.36 down-regulated
SPHKAP A-kinase anchor protein SPHKAP -6.23 down-regulated
TBX2 T-box transcription factor TBX2 -1.60 down-regulated
KIAA1324 UPF0577 protein -1.48 down-regulated
KIF5A Kinesin heavy chain isoform 5A -2.10 down-regulated
ARHGAP28 Rho GTPase-activating protein 28 -2.01 down-regulated
C1orf233 Fibronectin type-III domain-containing transmembrane protein -1.94 down-regulated
NRG1 Pro-neuregulin-1, membrane-bound isoform -1.83 down-regulated
HSPA1A Heat shock 70 kDa protein 1A -2.19 down-regulated
THBS1 Thrombospondin-1 -1.67 down-regulated
PLIN1 Perilipin-1 -2.51 down-regulated
XKRX XK-related protein 2 -4.19 down-regulated

�FC: log2FoldChange.

��infinite: ratio between the number of sequences in normal tissue equal to 0 over the number of sequences found for multinodular goiter.

https://doi.org/10.1371/journal.pone.0268354.t001
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2) reduced apoptotic pathway activity; 3) increased inflammatory activity; and 4) H19 gene

expression with possible inhibitory activity of the p53 proto-oncogene.

The presence of H19 gene products hyper-expressed in multinodular goiter, a non-malig-

nant disease with different forms of presentation in endemic regions (small and large multi-

nodular goiters), contributes to the understanding of the genesis of multinodular goiter and its

possible roles as a risk factor for malignant lesions and as a possible molecular marker.

Fig 2. Protein-protein interaction analysis of 63 differentially expressed functional genes using the GeneMANIA

software. A total of 423 gene interactions (more than 50% co-expression) of the five genes (TNF-RSF19, AC2413771

(HOTS gene), RP11-514P8.6, C1QL4, and SPHKAP) had no interactions identified with the others.

https://doi.org/10.1371/journal.pone.0268354.g002
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Further studies in endemic areas with more replicates for NGS analysis and a better under-

standing of the function of ncRNAs in the development of the disease will be necessary to con-

firm the hypothesis of multinodular goiter as a pro-tumor state of the thyroid.

Previous findings in the literature have described the low expression of the H19 gene and

its products in thyroid cancer [46], which contradicts the high expression of this sequence in

the multinodular goiter samples used in this study. This suggests that high H19 gene expres-

sion may be used in conjunction with other molecular markers as a diagnostic tool in deciding

between conservative and/or surgical treatment for multinodular goiter patients in endemic

areas, such as the Amazon.

Future studies should further elucidate the molecular profile of multinodular goiter, deepen

the understanding of the functions of non-coding RNA in malignant and non-malignant nod-

ular diseases, and facilitate the development of rapid and cost-effective diagnostic protocols

that consider the level of H19 gene expression in patients with multinodular goiter.
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