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ABSTRACT In recent years, convolutional neural networks (CNNs) have found many applications in 

medical image analysis. Having enough labeled data, CNNs could be trained to learn image features and used 

for object localization, classification, and segmentation. Although there are many interests in building and 

improving automated systems for medical image analysis, lack of reliable and publicly available biomedical 

datasets makes such a task difficult. In this work, the effectiveness of CNNs for the classification of breast 

lesions in ultrasound (US) images will be studied. First, due to a limited number of training data, we use a 

custom-built CNN with a few hidden layers and apply regularization techniques to improve the performance. 

Second, we use transfer learning and adapt some pre-trained models for our dataset. The dataset used in this 

work consists of a limited number of cases, 641 in total, histopathologically categorized (413 benign and 228 

malignant lesions). To assess how the results of our classifier generalize on our data set, a 5-fold cross-

validation were employed, where in each fold 80% of data were used for training and the 20% for testing. 

Accuracy and the area under the ROC curve (AUC) were used as the main performance metrics. Before 

applying any regularizations techniques, we achieved an overall accuracy of 85.98% for tumor classification, 

and the AUC equal to 0.94. After applying image augmentation and regularization, the accuracy and the AUC 

increased to 92.05% and 0.97, respectively. Using a pre-trained model, we achieved an overall accuracy of 

87.07% and an AUC equal to 0.96. The obtained results demonstrated the effectiveness of our custom 

architecture for classification of tumors in this small US imaging dataset, surpassing some traditional learning 

algorithm based on manual feature selection. 

INDEX TERMS Breast Tumor, Ultrasound Images, Convolutional Neural Network, Transfer Learning. 

I. INTRODUCTION 

   According to World Cancer Report, 2014, Breast cancer 

has a very high incident rate, 43.3%, and is one of the main 

causes of cancer death among young women [1]. Despite the 

high death rate of 25.5 [2], a study showed that the early 

detection and treatment of malignant breast tumors 

accounted for 38% decrease in mortality rate from 1989 to 

2014 [1]. 

   Ultrasound (US) is one of the main procedures to diagnose 

breast lesion [3]. Although Digital Mammography (DM) is 

the most effective technique [3], US has the advantages of 

being safer, more cost effective, and sensitive to tumors 

located in dense areas [4]. In recent years, many attempts 

have been made to automate the diagnosis procedures and 

minimize the operator dependency of US imaging [5]. 

Scientists applied a variety of algorithms and employed 

Computer-Aided Diagnosis (CAD) tools for localization and 

classification of breast lesions. To name a few, in [6], the 

authors used the wavelet filters to reduce the noise in US 

images and applied the Adaptive Gradient Descent algorithm 

for classification of lesions. In [7], a set of features from US 

images, each rated by a radiologist, were selected to from a 

feature matrix, the matrix was then fed to a biclustring 

algorithm and a back-propagation neural network used to 
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classify each lesions. In [8] and [9], the authors employed 

Convolutional Neural Network (CNN) and Transfer learning 

for breast lesion classification in US images, in each case the 

size of dataset was increased by applying image 

augmentation, then the dataset was split to form a training 

and evaluation set, the training set was used to fine-tune a set 

of well-known CNN architectures, and the evaluation set for 

measuring the performance. Using the CNN in these cases 

eliminated the need for manual feature selection, done in 

other works such as [6] or [7]. 

 In [9] and [10] the authors employed CNN for localization 

of lesions in breast US images. In both, the performances of 

different CNN architectures were compared against other 

machine learning methods. Using CNN resulted in an overall 

improvement of tumor localization, compared to other 

machine learning algorithms.  

According to [11], in medical image analysis, a very high 

sensitivity value and an AUC more than 0.95 are sought 

after, considering the vast popularity and success of CNNs 

in detection and classification of objects. Naturally, the 

following questions arise: Are CNNs effective when dealing 

with a relatively small dataset? Can a CNN architecture 

outperform traditional machine learning techniques in the 

classification of breast tumors in US imaging? To answer 

these questions, we propose a new CNN architecture for the 

classification of breast tumors in Ultrasound images. The 

results obtained by these networks will be compared to 

results from some traditional machine learning algorithms 

obtained from [12], which uses the same dataset and also 

compare with other well-known CNN architectures, using 

transfer learning. 

As mentioned, the primary objective of this work is to 

propose a simple CNN architecture and test it effectiveness 

for classification of images in a US image dataset. As for the 

specific objects, the followings can be listed: 

- Automatic feature selection using a custom build 

CNN architecture. 

- Utilization of different optimizers and regularization 

techniques to increase the classifier performance. 

- Using transfer learning to compare the performance 

of the custom-build network against other well-

known architectures. 

- Comparing the obtained results with other traditional 

machine learning methods, employing the same 

dataset. 

 

The remainder of this paper is organized as follows: In 

Section II a review of some related work will be presented; 

Section III introduces some relevant theoretical 

backgrounds; Section IV introduces the dataset and the 

hardware specification used for implementation of the 

algorithm; Section V gives a detailed description of the 

methodology, including the image preprocessing techniques, 

network architecture, training parameters, evaluating metrics 

and comparison methods; Sections VI and VII present and 

evaluate the results obtained by the given methodology and 

in Section VIII the paper concludes.    

 
II. Literature review 

The Convolutional Neural Networks (CNNs) have 

evolved and been employed in diverse areas of research [13] 

such as computer vision applications, document analysis, 

study of natural phenomena, speech recognition, 

advertisement, etc.  

In this section we highlight a number of related works, 

applying machine learning algorithms in classification and 

segmentation of lesions in breast US images. 

In [8], the authors employed Transfer Learning to adapt 

the ResNet50 network, pretrained with COCO image dataset, 

to segment and classify breast lesions in US images. 

Although the network is capable of identifying a variety of 

shapes and objects, the dataset used for fine tuning of the 

network was very small, 303 images in total, and could not 

obtain a satisfactory result. To overcome this limitation a set 

of different image augmentation techniques were employed, 

first, by applying image rotations and flips they doubled the 

number of training set , then they employed an image 

augmentation technique, called Multi-Scale Super-Pixel 

Elastic (MSSPE) to further increase the number of training 

set. Classification rate (CR), True Positive Rate (TPR), and 

True negative Rate (TNR) were used as performance 

metrices, obtaining 80.42%, 63.64% and 87.88%, 

respectively. 

The authors in [14] employed a dataset containing 1043 

images, each classified by a radiologist, and split the dataset 

for training, validation and testing a different set of known 

CNN architectures. The average recall rate (APR), F1 score 

and average precision rate (APR) were used as performance 

metrics. Between the different network architectures (such as 

VGG16, YOLO and SD300+ZFNet), the SD300+ZFNet had 

the best overall performance, obtaining 96.89, 67.23 and 

79.38 for APR, ARR, and F1-score, respectively. 

Hijab in [15] employed Transfer Learning for fine tuning 

of the VGG16 network and to classify breast tumors in an 

US image database, containing 1300 images. To overcome 

overfitting, the author used image augmentation to increase 

the dataset and built a new one containing 21,600 images, the 

new dataset was further divided to 15120 images for training 

and the rest for testing. The new training set was used to 

adjust the weights on the last convolutional layer of the 

VGG16 network and measure the performance of the system 

in classification of the images in the test set. The authors 

achieved 0.97 and 0.98 values for accuracy and AUC value, 

respectively. Although the obtaining results were 

satisfactory, only a portion of the dataset were used for 

testing, in addition some of the image augmentation 

techniques, such as shearing, are not recommended for this 

kind of images [16].  

In [17], the authors used transfer learning to adapt and 

train a known CNN network for the classification of breast 

tumors in ultrasound images. The dataset used in their work 

consists of 882 images. The dataset was split into a training 

set and a test set. For the training process, a matching layer 

was used to rescale the pixel intensities of the grayscale 

images and convert them to three separate RGB channels. 
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The VGG19 net was adapted for training and, after some 

fine-tuning, an AUC value equal to 0.936 was achieved. 

They argue that this performance surpassed the classification 

accuracy of a radiologist readings. 

In [18] the authors used transfer learning to adapt an 

Inception-v3 CNN, the third generation of GoogLeNet, for 

the classification of breast tumors in ultrasound images. The 

proposed CNN was trained and evaluated on 316 breast 

lesions (135 malignant and 181 benign). The proposed CNN 

achieved an AUC of 0.9468 with five-folder cross validation. 

The values of sensitivity and specificity were 0.886 and 

0.876, respectively.  

 The dataset in [19] is relatively bigger than other similar 

works (containing 2238 cases of breast lesions), but it is not 

histopathologically classified and is based on the BI-RADS 

classification. By using transfer learning, two neural 

networks were used first to detect the region of interest (ROI) 

and then classify this region (containing the lesion) into one 

of the five BI-RADS categories. The two-stage framework 

(as the authors call it) achieved the best accuracy value of 

0.998 for category 3 BI-RADS and the lowest value of 0.734 

for 4B category. 

Although we focused on papers using automatic feature 

selection, it is of particular interest to note the results yielded 

by [20], which utilized the same data set used in our work. 

The authors proposed a feature selection technique based on 

mutual information technique and a statistical test for breast 

tumor classification in ultrasound images. As the first step of 

the algorithm, the authors used the watershed transformation 

to segment the tumor area. After tumor segmentation, the 

tumor region was used for computing 22 morphological 

features, quantifying some local characteristics of the 

lesions. The features were ranked with mutual information 

using the minimal-redundancy-maximal-relevance criterion. 

Employing the ranked feature space, several m-dimensional 

feature subsets were created and were used for training of the 

Fisher linear discriminant analysis classifier. The AUC value 

was used as the performance metric. The experiments 

showed a similar classification performance, using only the 

top seven ranked features versus the whole feature set, 

obtaining an AUC value of 0.952. The top seven ranked 

features used for classification were based on convex hull, 

equivalent ellipse, long axis to short axis ratio, geometric and 

shape morphological features. 

Although CNNs have great success in automatic feature 

extraction and classification of objects, the authors in [21] 

state that they cannot generalize well in the lack of enough 

labeled data. As we mentioned earlier there are a few 

publicly available annotated datasets of breast lesions in 

ultrasound images. Therefore, in the majority of papers, the 

authors trained the network with a very limited number of 

labeled data. In some of these works, the obtained AUC 

value and sensitivity are not acceptable for clinical use (i.e. 

AUC < 0.95), and, in others, there is no justification in using 

a deep neural network for classification of images using a 

small dataset.  

One could argue that in lack of enough data, it is more 

convenient to use a more traditional machine learning 

algorithm such as SVM [22], as they are much faster to train 

and, in some cases, generalize better, such as the work in 

[20].  

In this work, as in the other previously reviewed works 

[8,9,14, and 17], using a small database (due to limitations 

of annotated medical image data bases), we study the 

performance of CNNs for the classification of breast lesions 

in US images. In our work, as will be presented in results 

section, through the use of some regularization techniques, 

we improve the CNN generalization, achieving and AUC 

>0.95 in the test set. The results of the proposed CNN model 

outperform the results obtained with some traditional 

algorithms obtained in [20], in which the authors achieved 

very satisfactory results using the same database, and the 

performance of some pre-trained networks (containing much 

more complexity) using transfer learning. 

This work presents the results of a master’s degree thesis 

[23] and extends the content of a preceding article [24].  
 
III. Some Theoretical Background 

In this section, a brief review of some regularization 

techniques used in this work and the philosophy behind their 

usage will be presented. 

A. Overfitting 

Despite the huge popularity of neural networks, considerable 

challenges remain in order to provide a good level of 

performance. These challenges refer to some practical 

problems, the most important being the overfitting [13, 25-

27]. The overfitting problem occurs when there is a gap 

between the CNN performance in the training data and in the 

test/validation data. The CNN presents a good performance 

in the training data but has a poor performance on the 

test/validation data.  This is caused by the paucity in the 

training data and by the complexity of the CNN model. 

Increasing the size of the training data, decreases overfitting, 

while increasing model complexity, increases overfitting.  

Some techniques, as data augmentation, dropout, L2 

regularization and batch normalization can be used to reduce 

overfitting. Next, we will describe these techniques.   

B. Data Augmentation  

The number of parameters of a CNN network is extremely 

large. To adjust all these parameters, we need a large dataset. 

As stated before, most annotated medical image data bases 

are small. To overcome this limitation, one solution is using 

data augmentation. 

In this study we used data augmentation by increasing the 

image database.  In all the images of the training database we 

applied some operations like rotation, crops, and flips. Some 

examples of rotation and flip are shown in Figure 1. it is 

noteworthy to mention that data augmentation was not 

applied in the evaluation or test dataset, but only in the 

training dataset.  
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FIGURE 1.  Examples of Image rotation and Flips. 

C. Dropout 

Dropout is a type of ensemble technique used in neural 

networks to reduce overfitting. This technique creates new 

neural networks by selective dropping some network nodes. 

and reduces the possibility that the network over-adapts to a 

given dataset. The predictions of different networks are 

combined to create the result. Dropout reduces overfitting 

and indirectly acts as a regularize [27].  

D. Batch normalization 

Batch normalization is a technique recent developed to cope 

with the problem of exploding and vanishing gradient 

problems, which accounts for the gradient increasing or 

decreasing in successive layers. Other important issue in 

deep is that of internal covariate shift. During training, the 

network parameters, as well as the hidden layer inputs 

changes. This continuing change causes the network training 

to slow down. The idea of batch normalization is to add 

“normalization layers” between hidden layers that oppose 

this type of behavior, creating features with rather similar 

variance.   

Besides improve generalization, batch normalization also 

decreases the network training time and, adding some noise 

to each hidden layer, helps in regularization. 

E. L2 Regularization 

L2 regularization, also referred to as Tikhonov 

regularization, introduces a penalty in the loss function, 

defined as the sum of squares of the values of the parameters. 

According to Aggarwal [28] small weight values are 

penalized less than the large values, because small values do 

not affect the prediction significantly. 

 

IV. Materials  

A. Dataset 

The database was shared by the Biomedical Engineering 

Graduate Program of Federal University of Rio de Janeiro – 

Brazil. The images were obtained at the Cancer National 

Institute (INCa, Rio de Janeiro, Brazil) from different 

patients and where acquired by several radiologist, during 

routine breast diagnosis exams. 

The project from which this database was originated was 

approved by the INCa research ethics committee (38/2001). 

The dataset is comprised of 641 images (413 benign cases 

and 228 malignant). The gold standard classification of each 

image, as benign or malignant, was histopathologically 

obtained by biopsy. The images were acquired with a 

Sonoline Sienna ultrasound machine, in Tiff format, with a 

depth resolution of 8 bits (256 grayscale). 

 

B. System Specification 

The CNN training/validation and testing was done in a 

computer system with the following characteristics:  

 

- Intel® Core™ i7 6700K @ 4.00 GHz processor;  

- GTX 1080 8 GB with 2560 CUDA cores, GPU 

- 16GB (2 x 8GB) DDR4 @ 2133MHz RAM 

memory. 

 

We emphasize that the GPU and processor run under the 

native frequencies (overclocking was not performed). 

V. Methods 

In this study, the proposed method for US tumor 

classification comprises five steps: preprocessing, automatic 

feature selection using the first layers of a CNN, image 

classification using logistic regression with cross-entropy 

loss, hyperparameter tuning and results evaluation. Figure 2 

shows a block diagram of these steps. 

 
A. Pre-Processing 

The pre-processing stages used for preparing the images to 

CNN submission were the following: image resize, database 

balancing, zero-centering and normalization.  The first step  

adjust the images size to CNN architecture, 224 x 224 pixels. 

Due to the fact that the database consists of a different 

number of images per category (benign and malignant), in 

the second step we equalize those quantities.  The third and 

fourth steps, zero-centering and normalization, were 

employed to increase the networj performance and decrease 

the training time.  

 
Image Resizing  

Different from traditional neural networks, the input data to 

a CNN is organized into a 2-dimensional grid structure. The 

value of each individual grid point is referred to as pixel. This 

grid structure is almost always fixed [25]. A priori, there are 

no defined rules for the choices of the grid size in a CNN 

input [27]. The grid size is a trade-off between the 

application, the training time and the amount of memory 

needed for processing. Large input grids enable deeper CNN 

architectures (when treating CNN at each convolutional 

layer the size of the output matrix decreases. Therefore, 

starting with a small-sized image limits the number of 

permitted layers). In recent and acquainted CNN 

architectures, grid sizes of 224x224 or 320x320 pixels are 

among some of the common choices [25]. In this study the 

images were resized to 224x224 pixels. 

The most usual techniques for changing image size are 

interpolation and cropping. While interpolation preserves 

image information, image cropping does not.  
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FIGURE 2.  Flowchart of our proposed method. 

 

 

In this study, to obtain a final image of 224 x224 pixels 

and do not lose image proportions we adopted the following 

procedure: first, we did a bilinear interpolation in the original 

image, size 159 x 182 pixels, and obtained an intermediate 

image size 201 x 224 pixels. After, zero-padding the vertical 

dimension, obtained a final image size of 224x224 pixels. 

Figure 3 shows the original and final image resulting from 

this pre-processing step. 
 
Equalization, zero-centering and normalization 

The original image database has 413 benign images and 228 

malignant images. To equalize the number of benign and 

malignant images we used a data augmentation technique as 

described in the following. 185 malignant images were 

chosen randomly and after applying image flips, to this 

randomly chosen images, the total number of malignant 

cases were increased to 413. Therefore, the final image 

dataset was comprised of 826 images (413 benign and 413 

malignant). 

The application of zero centering and normalization was 

done using eq. 1 and eq. 2, respectively. With zero-centering 

and normalization we obtain zero mean and unit variance, 

favoring the existence of more uniform gradients, that 

accelerate the learning process [13]. 

 

                                       𝑥′ = 𝑥 − 
1

𝑁
 ∑ 𝑥𝑖

𝑁

𝑖=1

                      (1)      

                                  𝑥′′ =  
𝑥′

√∑ (𝑥 − �̅�)2𝑁
𝑖=1

𝑁 − 1

                  (2)     

In eqs. (1) and (2), x represents the original image, 𝑥′ the 

zero-centered image, N, the number of samples in the data 

set and x’’ the normalized zero-centered image.  
B. Network architecture 

The CNN architecture proposed in this work is shown in 

Figure 4. It consists of four convolutional layers. Each 

convolutional layer is of a different size and number of 

filters. The size and number of filters of the convolutional 

layers are the following: In the first convolutional layer we 

used 32 filters size 3x3. In the second convolutional layer we 

used 64 filters size 7x7. In the third convolution layer, we 

used 128 filters size 5x5. In the last convolutional layer, we 

used 256 filters size 3x3.  In all convolutional operations we 

used the stride of 1 and zero-padding of 1.   

The activation function of all convolutional layers was the  

ReLU (Rectifier Linear Unit) function. In deep neural 

networks, the ReLU has many advantages over other non-

linearity functions such as sigmoid [13], their application 

reduces the likelihood of vanishing gradient and also 

represent a sparse representation of each layer [26], which 

can improve the performance and accelarate the learning 

process . After the application of the ReLU function, we have 

a 2x2 max-pooling layer. The max-pooling operation aims at 

reducing CNN dimensionality and make the network more 

invariant to the position of input objects.  

The last convolutional layer is followed by two fully 

connected layers. The first and second fully connected layers 

are followed by a ReLU and by a softmax activtion fucntion. 

The ReLU function adds nonlinearity. With the softmax 

activation function we obtain a binary logistic regression 

with cross-entropy loss, or a binary classification [26].  
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FIGURE 4 The proposed CNN architecture 

 

Training Parameters 

The following hyperparameter configuration was employed: 

For weights initialization we used the Gaussian/Uniform 

distribution. As optimizers in the backpropagation 

algorithm, we used. SGDM, ADAM, and RMSPROP. As a 

criterion for stopping CNN training we used 500 epochs. The 

Mini-batch size was set to 128. The same parameters were 

used for all optimizer simulations.  
 
C. Improving CNN Performance 

Deep neural networks require a large training set and 

generally perform better in the presence of more data [17]. 

Finding a reliable biomedical dataset is a difficult task [19]. 

Most of the available dataset, like the one used in this work, 

has a limited number of data.  

To avoid overfitting, while maintaining good 

performance, we introduced image augmentation, L2 

regularization, and dropout. For image augmentation, 

various Image reflections, rotations, and translations were 

used to generate a new dataset. This new data set contains 

41630 images. Batch normalization was applied after each 

convolutional layer (before the non-linearity). The dropout 

was employed after the first fully connected layer, with a 

probability of 0.5 and L2 Regularization with a fixed 

regularization factor of 0.05. 

 

 

D. Evaluation Metrics 

In this work, accuracy (eq.3), specificity (eq.4), sensitivity 

(eq.5), precision (eq.6), false alarm (eq.7), and the Area 

Under the ROC curve (AUC) (eq.8) were used as the 

performance metrics. 

       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
×  100         (3)   

                  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦(%) =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
×  100                 (4) 

                  Sensitivity(%) =  
TP

TP + FN
×  100                 (5) 

             Precision(%) =  
TP

TP + FP
×  100                 (6) 

       False Alarm(%) =  
FP

TP + FN
×  100                 (7) 

                              𝐴𝑈𝐶 = ∫ 𝑓(𝑥)𝑑𝑥
1

0
                    (8) 

      In these equations, TP, TN, FP, FN, f(x) represent the 

number of true positives, true negatives, false positives, false 

negatives, and the Receiver Operating Characteristic (ROC) 

curve, respectively. 

 

FIGURE 3. The effect of applying bilinear interpolation and zero 
padding on a sample image: (a) original image, (b) image obtained 

from the original one through bilinear interpolation and zero-

padding. 
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E. Comparison Methods 

In this work, three comparisons will be used to evaluate the 

performance of our proposed method.  

First, the best results obtained from our method will be 

compared to similar work in [10]. The authors in [10] 

employed the same dataset and followed a similar objective, 

using different machine learning algorithms. 

Second, to determine how well our custom network 

performs against other CNNs, three well-known networks 

will be chosen (VGG, ResNet, and GoogLeNet). Using 

transfer learning, the results obtained from each network will 

be compared with our architecture.  

Finally, to have a human level comparison, all the images 

in our dataset were classified by two radiologists based on 

BI-RADS® (Breast Imaging Reporting System) 

characteristics. The beingin and malignant cases were mixed 

and shuffled, printed and passed to the radiologists for 

evaluation.To be able to compare the results of their findings, 

we need to establish a new method by applying a fixed 

number for each BI-RADS category, representing the 

probability of malignancy. To do so, we calculated the mean 

value of the probability of malignancy and attributed a fixed 

value to each BI-RADS category (see Table 1). 

In addition, to calculate the accuracy, specify, sensitivity, 

precision and false alarm of radiologists’ findings, we made 

an implicit assumption that the tumors classified as BI-

RADS 2, 3, 4a and 4b (with probability of malignantly less 

than 50%) are benign and the ones classified as 4c, and 5 

(with probability of malignancy more than 50%) are 

malignant. 

VI. Results 
Table 2 summarizes the resultant performance metrics using 

different optimizers. Although some variations are present, 

the performance differences using these optimizers are 

minimal; using SGDM resulted in a slight improvement in 

AUC value and therefore selected as our candidate. 

Table 3 demonstrate the resultant performance metrics 

after applying image augmentation and regularizations. 

Figure 5 compares the ROC curves for each case. 

As these results show, image augmentation associated 

with appropriate regularization techniques increased both 

accuracy and AUC. 

To better estimate the performance of our proposed 

method, some well-known pre-trained models were adapted, 

and the results were compared (Table 4). These networks are 

pre-trained on massive datasets, and although the types of 

data used for training were different, images exhibit similar 

characteristics, and, in many cases, a simple fine-tuning can 

adapt the pre-trained model for the new dataset. 

Also, a comparison regarding the AUC with a different 

method was made. In [10], the same dataset was used, and 

the most important morphological and texture features 

attributes were selected. Table 5 summarizes the best AUC 

values achieved by each methodology. 

 

 
FIGURE 5. The ROC Curves, and the AUC value of our proposed 

method. 
 

Table 6 shows in a 2x2 contingency table, a comparison 

of hits and errors of the proposed CNN architecture with 

VGG19, GoogLeNet, and ResNet50 architectures, based on 

the accuracy values. To evaluate the statistical significance 

of the values presented in Table 6, the Chi-square test, χ² was 

applied. The null hypothesis is that there are no significant 

statistical differences between the accuracy values obtained 

with proposed CNN architecture and the other architectures.  

The adopted significance level was 99.0%, and degree of 

freedom was equal to 1, resulting in a critical value of χ² of 

𝑡𝑐 = 6.63. The values of the significance tests shown in 

Table 6 are all higher than  𝑡𝑐, so the null hypothesis must be 

rejected. 

In this comparison, we applied a statistical significance 

test [29] to evaluate the differences between the AUC’s 

obtained by the proposed CNN architecture, 0.971, and the 

other methods shown in table 5: texture feature selection [10] 

and morphological feature selection [10], 0.897 and 0.942, 

respectively. The comparison with first one shows that 𝑝 <
0.000001. The comparison with the second one shows that 

𝑝 = 0.009. Therefore, the differences are statistically 

significant at a significance level of 99%. 

Finally, to have a human level comparison, the resultant 

analysis of two radiologists in terms of accuracy, specificity, 

sensitivity, precision, false alarm, and the AUC value (table 

7) were obtained and compared with our proposed method. 

 

TABLE 1. Fixed values assigned for each BI-RADS category. 

Bi-RADS Category Probability of Malignancy Fixed Value 

2 0 % 0% 

3 0 - 2% 1% 

4a 2 – 10% 6% 

4b 10 – 50% 30% 

4c 50 - 95% 75% 

5 More than 95 % 97% 
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TABLE 2. performance metrics of the network, using different optimizers. 

Iteration Accuracy Specificity Sensitivity Precision False Alarm AUC Training Time  

SGDM 85.98% 88.82% 83.13% 88.42% 11.07% 0.94 31:06  

ADAM 86.31% 89.07% 83.57% 88.51% 10.93% 0.93 31:05  

RMSPROP 86.08% 85.94% 86.19% 86.34% 14.01% 0.93 31:58  

TABLE 3. performance metrics after applying image augmentation and regularization. 

Iteration Accuracy Specificity Sensitivity Precision False Alarm AUC Training Time  

Image Augmentation 91.91% 89.30% 94.49% 89.99% 10.58% 0.96 40:25  

         

Image Augmentation +  

L2 regularization + Dropout 

92.05% 89.81% 94.25% 90.51% 10.05% 0.97 40:05  

TABLE 4. performance comparison of proposed method versus pre-trained models. 

Iteration Accuracy Specificity Sensitivity Precision False Alarm AUC  

VGG19 87.88% 92.93% 82.68% 92.68% 7.07% 0.96  

GoogLeNet 87.07% 93.66% 80.48% 93.02% 6.34% 0.96  

ResNet50 85.85% 79.51% 86.2% 83.44% 20.48% 0.96  

Proposed Method 92.05% 89.81% 94.25% 90.51% 10.05% 0.97  

TABLE 5. Comparison of the AUC values obtained using different methodologies. 

Measurements AUC  

CNN approach 0.971  

Texture feature selection [10] 0.897  

Morphological Feature selection [10] 0.942  

TABLE 6. Chi-square test applied to evaluate statistically significant differences between the accuracies 

obtained by the proposed architecture and by VGG19, GoogLeNet and ResNet 50 architectures. 

Method 1 

X 

Method 2 

Hits Errors 

 

Chi-Square 

 

VGG19 (Accuracy = 87.88%) 726 100   

x   15.5  

Proposed Method (Accuracy = 92.05%) 760 66   

GoogLeNet (Accuracy = 87.07%) 719 107   

x   19.09  

Proposed Method (Accuracy = 92.05%) 760 66   

ResNet50 (Accuracy = 85.50%) 706 120   

x   26.75  

Proposed Method (Accuracy = 92.05%) 760 66   

     

TABLE 7. PERFORMANCE COMPARISON OF OUR METHOD VERSUS RADIOLOGISTS CLASSIFICATIONS. 

Iteration Accuracy Specificity Sensitivity Precision False Alarm AUC  

Radiologist 1 87.58% 99.73% 73.55% 99.58% 0.3% 0.97  

Radiologist 2 81.76% 85.71% 74.44% 73.77% 26.45% 0.84  

Our Proposed Method 92.05% 89.81% 94.25% 90.51% 10.05% 0.97  
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VII. Discussion 

To summarize the obtained results, we categorize the 

findings into, first, the efforts to increase the network 

performance, and second, the comparison methods.  

As for the efforts to increase the performance, various 

regularization techniques were used. 

The given dataset is relatively small, which causes the 

system to suffer from overfitting problem. Data 

augmentation, hyperparameter tuning, and applying 

appropriate regularization, resulted in a significant increase 

both in terms of accuracy and the AUC.   

After improving the performance of our proposed method, 

a set of comparisons were done to analyze better and 

understand the behavior of the system. In this work, three 

comparisons were made:  

- Comparison of our CNN architecture with other 

three well know CNN architectures in the 

classification of tumors in our database. 

- Comparison of our proposed method with some 

traditional machine learning techniques in the 

classification of the same dataset. 

- Human-level comparison. 

The objective of the first comparison was to evaluate the 

performance of our CNN against some other well-known 

network architectures. Using transfer learning, VGG19, 

GoogLeNet, and ResNet50 were used to classify the tumors 

in our dataset, and the results were compared to our proposed 

method. Between these three networks, GoogLeNet 

demonstrated the best performance. 

Although GoogLeNet resulted in very satisfactory results, 

our network outperforms it in terms of accuracy, sensitivity, 

and AUC. The differences are statistically significant.  

In the second comparison, the effectiveness of CNN 

versus some traditional machine learning algorithms, in the 

classification of breast tumors in our dataset, was evaluated. 

In [10], the same dataset was used. As table 5 summarized 

the results, the authors achieved an AUC equal to 0.897 and 

0.942, using texture and morphological features, 

respectively, which is lower than 0.97 achieved by our CNN 

approach. 

In the last comparison, the performance of our method was 

evaluated against the analysis of two radiologists. The 

radiologists were asked to classify the tumors based on the 

BI-RADS classification.  

For a fair comparison, after the specialists’ analysis, the 

tumors, categorized as 2, 3, 4a and 4b (with probability of 

malignancy less than 50 %) were classified as benign and the 

ones categorized as 4c and 5, as malignant (it is worth to 

mention that the neural networks follow a similar behavior 

in classification of objects). As can be seen (Table 7), our 

proposed method outperformed the radiologists’ evaluations 

in terms of accuracy and sensitivity but falls below the 

radiologist 1 performance regarding specificity, precision, 

and false alarm.  

Figure 6 demonstrates the results of these comparisons 

regarding the ROC curves and the AUC value. 

VIII. Conclusion 

In this work, we investigated the effectiveness of Deep 

Learning, in particular, CNNs, for the classification of 

abnormalities in breast ultrasound images. A network 

architecture with four convolutional layers was proposed 

capable of classifying US images as either Benign or 

Malignant. A variety of attempts were made to improve the 

performance of the proposed method. 

 
FIGURE 6. The ROC Curves, and the AUC value of our proposed method 

vs. radiologist’s diagnosis. 

 

We explored various hyperparameter tuning and 

regularization techniques such as image augmentation, L2 

regularization, and dropout, to increase network 

performance and decrease the overfitting problem. The 

performance of both systems, with and without 

regularization, were evaluated both in terms of accuracy and 

the Area Under the ROC Curve (AUC). Our proposed 

method, without regularization, presented an overall 

accuracy of 85.98% and AUC equal to 0.94. After applying 

regularization and fine-tuning, the accuracy and the AUC 

were significantly improved: 92.05% for accuracy and 0.97 

for the AUC. To verify the effect of overfitting on the 

network, the proposed method was compared to some pre-

trained CNN architectures using transfer learning and fine-

tuning. The comparison demonstrated the effectiveness of 

our proposed method against these well-known CNN 

architectures, for the given dataset. Although the pre-trained 

models had a similar performance, our network with fewer 

hidden layers is faster for testing and more suited for this 

specific application (considering the number of training data 

and characteristics of US images). Also, the results were 

compared to another CAD system, which considered to be 

state of the art for classification of breast tumors in US 

images, employing the same data set. The authors in [10], 

obtained their best results, using five morphological features, 

attaining an AUC equal to 0.942. The comparison showed 

that our proposed method, using automatic feature selection 

and CNN, outperformed the system using handcrafted 

morphological features. Finally, to have a human level 

comparison, the obtained results were compared to two 

radiologist's diagnoses, our proposed method outperformed 

the specialist's analysis in terms of accuracy but could not 

reach the same levels of precision and specificity obtained 

by one of the radiologists.   
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The main contribution of this work was proposing and fine 

tuning a CNN model (using data augmentation and 

appropriate regularization) that obtains a good 

generalization, with a few numbers of layers. The 

performance of this model was better than traditional 

machine learning approaches as well as pre-trained networks 

with much larger architectures. 

Although the proposed method provided promising results 

and our study proved the effectiveness of CNNs for 

classification of breast lesion, even with a limited number of 

training data, our model can be improved in several ways. It 

is known that in the presence of more data, the performance 

of CNNs increases. In this work, the dataset was relatively 

small, and a limited number of hidden layers were used to 

prevent the overfitting problem (by preventing the system to 

adapt too much to the data). In future work, we plan to gather 

a bigger dataset and employ different CNN architectures 

with more hidden layers. Also, we plan to further study the 

tumors not classified correctly by our system, trying to find 

some similarities among these cases and the ones 

misclassified by the radiologists, adding more data with 

these specific characteristics to our dataset and build a more 

reliable system, closing the gap to Human-Level 

performance. Although we have obtained excellent results 

with the proposed architecture, in future work we also plan 

to combine the extracted characteristics from the three 

transfer leaning architectures, VGG, ResNet, and 

GoogLeNet, in a final classification layer, as shown in [30].  
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